
THE ARCHITECTURE OF
COMPLEXITY REVISITED:
DESIGN PRINCIPLES FOR ULTRA-
LARGE-SCALE SYSTEMS

RICK KAZMAN
UNIVERSITY OF HAWAII AND

SOFTWARE ENGINEERING
INSTITUTE/CMU

THE ARCHITECTURE OF
COMPLEXITY

Simon, 1962: “complexity frequently takes the form
of hierarchy”
- complex systems are organized as hierarchies
with stable sub-assemblies
- sub-systems are “nearly
decomposable”
- e.g. social systems,
biological systems

ULS SYSTEMS
ULS Report, Northrop et al, 2006:
ULS systems are “socio-technical
ecosystems”

• such systems are undoubtedly
hierarchical and nearly
decomposable

• but their properties do not come
from hierarchy and near
decomposability alone

ULS SYSTEM CHARACTERISTICS

1.  decentralization
2.  inherently conflicting, unknowable, and

diverse requirements
3.  continuous evolution and deployment
4.  heterogeneous, inconsistent, and changing

elements
5.  erosion of the people/system boundary
6.  normal failures, and
7.  new paradigms for acquisition and policy

ULS SYSTEMS ARE DIFFERENT

ULS characteristics can be seen in systems of
conventional scale, e.g. normal failures,
heterogeneity, …
but in ULS systems, they dominate
Hence ULS systems can not be built in ways that
have previously sufficed.
"Scale changes everything"

RESEARCH QUESTION
Given that ULS systems are different, what are the
underlying principles for their construction?

WICKED PROBLEMS
ULS systems are “wicked” problems.
Wicked problems possess several unique
characteristics:

• stakeholders do not all agree on the problem to be
solved—requirements are vague and unstable

• solutions are not right or wrong, they are better or
worse

• enormous complexity, both among the
subcomponents and between the “problem” and the
world; and any solution may change the problem

•  they have no single objective measure of success

WICKED PROBLEMS

RESEARCH METHODOLOGY
Examine systems that exhibit ULS properties

•  P2P systems (such as Skype and its predecessor KaZaA),
•  the internet,
•  the public switched telephone network (PSTN),
•  biological systems,
• …

and attempt to distill the architectural principles
behind them.

FOLLOWING SIMON’S FOOTSTEPS

Architectures for ULS must embody three
principles:
- peer to peer structure: dependence upon
centralized resources must be avoided.
- local assemblies of components: complex
systems contain local assemblies of a “small”
number of components that interact weakly with
other assemblies.
- hierarchical structure: Simon's key organizing
principle of complex systems.

RAW DATA
Let us now examine the principles behind:

• P2P systems
• biological systems
•  the internet
•  the PSTN

PRINCIPLES FROM KAZAA
Distributed Design
Exploiting Heterogeneity
Load Balancing
Locality in Neighbor Selection
Connection shuffling
Efficient gossiping algorithms

PRINCIPLES FROM BIOLOGICAL
SYSTEMS

Flake's attributes of agents in complex systems:
- Collections, Multiplicity, Parallelism
- Iteration, Recursion, Feedback
- Adaptation, Learning, Evolution

PRINCIPLES FROM BIOLOGICAL
SYSTEMS

Holland defined characteristics and mechanisms of
complex adaptive systems.

Characteristics:
-  Aggregation
-  Non-linearity
-  Flows
-  Diversity

Mechanisms:
-  Tagging
-  Internal Models
-  Building Blocks

ANT COLONY OPTIMIZATION
A computational technique for searching—finding
paths through graphs—inspired by the behavior of
ant colonies.
ACO simulates this behavior, by not only following
existing paths but also randomly trying new paths
and leaving computational “pheromones” that
decay over time.

PRINCIPLES FROM THE
INTERNET

Arguably the most successful (man-made) ULS.
IETF design principles for the internet:
- One and only one protocol
- End-to-end functions realized by end-to-end protocols
- Heterogeneity
- Scale-free design
- Modularity
- Send/receive asymmetry
- Self-description

PRINCIPLES FROM THE PSTN
The PSTN successfully handles hundreds of
millions of concurrent customers with switches
that experience no more than 2 hours of failure
over 40 year lifespans.
Properties that lead to its robustness:
- Reliable software
- Dynamic rerouting
- Loose coupling
- Human intervention

REFLECTION
From these principles we can now attempt to
triangulate—determine their commonalities.
The goal: to generate a set of tactics.

TACTICS
Tactics are the building-blocks of architecture.
A tactic is a design decision that is influential in the
control of a quality attribute response.
}  We previously defined tactics that

address seven quality attributes:
availability, interoperability, modifiability,
performance, testability, security, and
usability.

EXAMPLE: AVAILABILITY
TACTICS Availability Tactics

Fault Detection Fault Prevention

Ping / Echo Removal from
Service

System Monitor

Exception
Detection

Transactions

Process
Monitor

Fault Recovery

ICMP/ICMPv6
Echo Req/Reply

MPLS Ping

Watchdog

Heartbeat

System
Exceptions
Parameter
Fence

Parameter
Typing

Preparation
and Repair

Reintroduction

Voting

Triple Modular
Redundancy

Active
Redundancy

Facilities
Protection

Passive
Redundancy

Spare

Escalating
Restart

Software Upgrade

Exception
Handling

Error Codes
Exception
Classes

Function Patch

Class Patch

Hitless ISSU

Shadow

Rollback

Non-Stop
Forwarding

State
Resynchronization

Coordinated
Checkpointing

Uncoordinated
Checkpointing

Exception
Prevention

Atomic
Commit
Protocol

Exception
Classes

Smart Ptrs

Wrappers

Fault

Fault
Masked
or
Repair
Made

Graceful
Restart

TACTICS FOR ULS SYSTEMS

Building Blocks InteractionAggregation

Modularity

Self-description

Environment Models

Connection Shuffling

Load Balancing

Gossiping

TaggingAbstract Connections

Heterogeneity

Parallelism

Self-similar structure

BUILDING BLOCKS
Modularity
Self-description
Environment Models

BUILDING BLOCKS: MODULARITY

Arguably the most common design principle in all
of software engineering

• supports super-linear growth in software
• supports the loose coupling of the PSTN
• all biological systems are composed of

independent agents

BUILDING BLOCKS
Modularity
Self-description
Environment Models

BUILDING BLOCKS: SELF-
DESCRIPTION
Models that the peers maintain of themselves

• self-description permits a rudimentary form of
self-awareness

• a core property of the internet: “objects should
be self-describing”

• biological agents all have internal models,
which they update over time

BUILDING BLOCKS
Modularity
Self-description
Environment Models

BUILDING BLOCKS: ENVIRONMENT
MODELS
Models that peers maintain of their environment

• complex adaptive systems contain internal
models of the environment which are
constantly updated to reflect observed
phenomena

• P2P systems use such models in their
gossiping algorithms

AGGREGATION
Self-similar structure
Heterogeneity
Concurrency
Abstract Connections

AGGREGATION: SELF-SIMILAR
STRUCTURE
Collections of entities (including collections of
collections) are treated similarly to individuals

• supernodes in P2P systems
•  fractal structure of the internet

AGGREGATION
Self-similar structure
Heterogeneity
Concurrency
Abstract Connections

AGGREGATION: HETEROGENEITY
Peers will have different properties; these must be
abstracted and supported

•  internet nodes
• P2P nodes
• diversity in biological systems

AGGREGATION
Self-similar structure
Heterogeneity
Concurrency
Abstract Connections

AGGREGATION: CONCURRENCY
Peers can run independently, in parallel, without
centralized control

•  true of all biological systems
•  true of any system of systems

AGGREGATION
Self-similar structure
Heterogeneity
Concurrency
Abstract Connections

AGGREGATION: ABSTRACT
CONNECTIONS

Connections must be abstract, and realized at run-
time

•  internet nodes
• SOA services and SoS nodes are annotated

with properties
• biological systems, where connections are all

realized at run-time

INTERACTION
Connection Shuffling
Load Balancing
Gossiping
Tagging

INTERACTION: CONNECTION
SHUFFLING
Peers actively and continuously seek out their
neighbors

• core feature of the PSTN, P2P systems, the
internet

• randomness in ant interactions

INTERACTION
Connection Shuffling
Load Balancing
Gossiping
Tagging

INTERACTION: LOAD BALANCING
For efficient operation the work needs to be
appropriately apportioned among the peers

• P2P systems
• web-server farms

However, in ULS systems balancing needs to
account for power laws of relationships.

INTERACTION
Connection Shuffling
Load Balancing
Gossiping
Tagging

INTERACTION: GOSSIPING
The peers need to be constantly interacting:
adapting to their ever-changing state and
environment

• P2P systems exchange state information
• ants leave pheromone trails

INTERACTION
Connection Shuffling
Load Balancing
Gossiping
Tagging

INTERACTION: TAGGING
For groups to form, and to create boundaries,
some form of tagging is required

• DNS servers support hierarchical tagging
• super-nodes in P2P systems
• nest-mates in ant colonies

CONSEQUENCES
Not only are these tactics characteristic of ULS
systems but they are necessary characteristics.
It is difficult to imagine how a system could grow
without bound without all of these tactics.
Different tactics may be present to different
degrees in the PSTN, or KaZaA, or the internet, or
in biological systems, but they are all present.

PROOF (?)
Clearly these claims can not be “proven”.
But what are their explanatory power?
We will consider additional two examples, one
biological and one artificial:
1)  MANETs (Mobile Ad hoc NETworks)
2)  Slime molds

EVIDENCE: MANETS

Mobile Ad hoc NETworks:
- each peer is modular, operating in parallel
- peers are typically heterogeneous, sharing only a
communication protocol, which acts as an abstract
connection mechanism
- peers are self-describing
- nodes exhibit self-similar structure
- nodes are continually connection
shuffling and gossiping

EVIDENCE: SLIME MOLDS
•  slime mold cells
•  are peers (hence modular) with their own state,

hiding internals, operating concurrently.
•  exist as individuals, but can aggregate into

groups of up to 105 to create “slugs” that can
travel, or into spore-bearing fruiting structures—
sporangiophore—for reproduction.

•  have internal models
•  have environmental models
•  exhibit heterogeneity

PARTING THOUGHTS
Every tactic exists to serve an objective in the
larger process of design, to control a systemic
response.
The tactics presented here exist to manage (ultra-
large) scalability concerns.
Taken together, these tactics represent an
empirically grounded ontology of ULS design.

